# Integrate sin^3⁡(x+2).

Category: QuestionsIntegrate sin^3⁡(x+2).
Editor">Editor Staff asked 11 months ago

Integrate sin^3⁡(x+2).

(a) \frac{3}{4} \,(sin⁡(x+2))+\frac{1}{12} \,cos⁡(3x+6)+C

(b) –\frac{3}{4} \,(cos⁡(x+2))-\frac{1}{5} \,cos⁡(3x+6)+C

(c) –\frac{3}{4} \,(cos⁡(x+2))+\frac{1}{12} \,cos⁡(3x+6)+C

(d) –\frac{3}{4} \,(cos⁡(x+2))+\frac{1}{12} \,sin⁡(x+2)+C

The question was posed to me during an interview.

Enquiry is from Methods of Integration-2 topic in chapter Integrals of Mathematics – Class 12
NCERT Solutions for Subject Clas 12 Math Select the correct answer from above options
Interview Questions and Answers, Database Interview Questions and Answers for Freshers and Experience

Editor">Editor Staff answered 11 months ago

Right option is (c) –\frac{3}{4} \,(cos⁡(x+2))+\frac{1}{12} \,cos⁡(3x+6)+C

Explanation: To find: ∫ 3 sin^3⁡(x+2) dx

We know that, sin⁡3x=3 sin⁡x-4 sin^3⁡x

∴sin^3⁡⁡x=\frac{3 sin⁡x-sin⁡3x}{4}

sin^3⁡(x+2)=\frac{(3 sin⁡(x+2)-sin⁡(3x+6))}{4}

\int sin^3⁡(x+2) \,dx=\frac{3}{4} \int sin⁡(x+2) \,dx-\frac{1}{4} \int \,sin⁡(3x+6) \,dx

=-\frac{3}{4} \,(cos⁡(x+2))+\frac{1}{12} \,cos⁡(3x+6)+C