If the direction ratios of a line are 5, 4, -7 respectively, then find the direction cosines.

Category: QuestionsIf the direction ratios of a line are 5, 4, -7 respectively, then find the direction cosines.
Editor">Editor Staff asked 11 months ago

If the direction ratios of a line are 5, 4, -7 respectively, then find the direction cosines.
 
(a) \(\frac{75}{\sqrt{90}},\frac{4}{\sqrt{90}},\frac{5}{\sqrt{90}}\)
 
(b) \(\frac{5}{\sqrt{90}},\frac{4}{\sqrt{90}},-\frac{7}{\sqrt{90}}\)
 
(c) \(\frac{5}{\sqrt{70}},\frac{4}{\sqrt{70}},-\frac{7}{\sqrt{70}}\)
 
(d) \(\frac{3}{\sqrt{90}},\frac{4}{\sqrt{90}},-\frac{5}{\sqrt{90}}\)
 
This question was addressed to me in unit test.
 
This intriguing question comes from Direction Cosines and Direction Ratios of a Line topic in portion Three Dimensional Geometry of Mathematics – Class 12
NCERT Solutions for Subject Clas 12 Math Select the correct answer from above options 
Interview Questions and Answers, Database Interview Questions and Answers for Freshers and Experience

1 Answers
Editor">Editor Staff answered 11 months ago

The correct option is (b) \(\frac{5}{\sqrt{90}},\frac{4}{\sqrt{90}},-\frac{7}{\sqrt{90}}\)
 
For explanation: If a,b,c are the direction ratios and l,m,n are the direction cosines respectively for a given line, then the direction cosines in terms of the direction ratios can be expressed as
 
l=±\(\frac{a}{\sqrt{a^2+b^2+c^2}}\)
 
m=±\(\frac{b}{\sqrt{a^2+b^2+c^2}}\)
 
n=±\(\frac{c}{\sqrt{a^2+b^2+c^2}}\)
 
Given that, a=5, b=4, c=-7
 
l=\(\frac{5}{\sqrt{(5^2+4^2+(-7)^2)}}=\frac{5}{\sqrt{(25+16+49)}}=\frac{5}{\sqrt{90}}\)
 
m=\(\frac{4}{\sqrt{(5^2+4^2+(-7)^2)}}=\frac{4}{\sqrt{90}}\)
 
n=-\(\frac{7}{\sqrt{(5^2+4^2+(-7)^2)}}=-\frac{7}{\sqrt{90}}\)