Find \(|\vec{a}+\vec{b}|\), if \(|\vec{a}|=3 \,and \,|\vec{b}|=4 \,and \,\vec{a}.\vec{b}=6\).

Category: QuestionsFind \(|\vec{a}+\vec{b}|\), if \(|\vec{a}|=3 \,and \,|\vec{b}|=4 \,and \,\vec{a}.\vec{b}=6\).
Editor">Editor Staff asked 11 months ago

Find \(|\vec{a}+\vec{b}|\), if \(|\vec{a}|=3 \,and \,|\vec{b}|=4 \,and \,\vec{a}.\vec{b}=6\).
(a) 34
(b) \(\sqrt{37}\)
(c) 13
(d) \(\sqrt{23}\)
The question was asked in my homework.
This intriguing question originated from Product of Two Vectors-1 in chapter Vector Algebra of Mathematics – Class 12
NCERT Solutions for Subject Clas 12 Math Select the correct answer from above options 
Interview Questions and Answers, Database Interview Questions and Answers for Freshers and Experience

1 Answers
Editor">Editor Staff answered 11 months ago

The correct answer is (b) \(\sqrt{37}\)
The explanation is: \(|\vec{a}+\vec{b}|^2=(\vec{a}+\vec{b}).(\vec{a}+\vec{b})\)