Find the value of \vec{a}+\vec{b}+\vec{c}, if \vec{a}=4\hat{i}-4\hat{j}, \vec{b}=-3\hat{i}+2k, \vec{c}=7\hat{j}-8\hat{k}.

Category: QuestionsFind the value of \vec{a}+\vec{b}+\vec{c}, if \vec{a}=4\hat{i}-4\hat{j}, \vec{b}=-3\hat{i}+2k, \vec{c}=7\hat{j}-8\hat{k}.
Editor">Editor Staff asked 11 months ago

Find the value of \vec{a}+\vec{b}+\vec{c}, if \vec{a}=4\hat{i}-4\hat{j}, \vec{b}=-3\hat{i}+2k, \vec{c}=7\hat{j}-8\hat{k}.
(a) \hat{i}-3\hat{j}
(b) \hat{i}+3\hat{j}-6\hat{k}
(c) \hat{i}+\hat{j}+6\hat{k}
(d) \hat{i}+6\hat{k}
I had been asked this question during an online exam.
I’m obligated to ask this question of Addition of Vectors in portion Vector Algebra of Mathematics – Class 12
NCERT Solutions for Subject Clas 12 Math Select the correct answer from above options 
Interview Questions and Answers, Database Interview Questions and Answers for Freshers and Experience

1 Answers
Editor">Editor Staff answered 11 months ago

The correct option is (b) \hat{i}+3\hat{j}-6\hat{k}
For explanation: Given that, \vec{a}=4\hat{i}-4\hat{j}, \vec{b}=-3\hat{i}+2k, \vec{c}=7\hat{j}-8\hat{k}
To find: \vec{a}+\vec{b}+\vec{c}
∴\vec{a}+\vec{b}+\vec{c}=(4\hat{i}-4\hat{j}) +(-3\hat{i}+2k) +(7\hat{j}-8\hat{k})
=(4-3) \hat{i}+(-4+7) \hat{j}+(2-8)\hat{k}